

Evolution of Hillslope Studies

Whipkey (1965)
demonstrated that
interflow could be
collected at different
layers

Relatively small hillslope3 X 4 meters

Dunne and Black (1970)

Greatly expanded trench 80 m long And up to 3 m in depth

Surface channel - palyethylene sheets Sand Backfall Backfill Varved Lake Deposit Till 1ft

Fig. 3. Cross section of the interceptor trench.

"nested within a 25 ha catchment

Weyman 1973

Employed multiple trenches on the hillslope, each capturing a specific depth Complemented measurements with soil blocks and tensiometers

Harr 1977 Anderson and Burt 1978

Detailed tensiometer data (beginning of automation)

Very detailed soil hydraulic Information

Nested in larger watershed

Did NOT use trench. Can use seeps at base of hillslope

Sklash 1979 McDonnell 1990

Fig. 1. M8 catchment showing locations of hydrometric instrumentation and sampling sites.

Combining detailed hydro metric work with isotopes

New understanding of tlow timing and processes

Nested, tensiometers, Piezometers, flow trenches

Torres et al. 1999

Figure 1. A 1-m contour map of the Coos Bay study site shows the relative position of tensiometers (dots), but the distances between them are not to scale. Tensiometer nests are identified by the encircled numbers; the shaded numbers represent the tensiometer nest locations where we determined in situ soil-water retention properties. The shaded rectangles across the site are access platforms, and a weir is shown at the base of the study site.

All of the above PLUS hillslope scale rainfall simulation

Trench Study Sites

Sonora

Honey Creek

Shallow Cave Site

Surface runoff

Throughfall

Interception

Results: Juniper Slopes

Influence of cutting juniper

Interflow still dominates but somewhat reduced.

No surface runoff

Intercanopy Plots

High surface runoff

Small interflow

Key measurements

- Surface runoff
- Shallow subsurface flow (trenches or seeps)
- Soil water (TDR)
- Groundwater (piezometers)
- Soil Tension (tensiometers will not work)
- Natural isotopes